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On the dynamic symmetry of the stationary Schrodinger 
equation 

L V Poluyanov and A I Voronin 
Institute of Chemical Physics, Academy of Sciences, Moscow, USSR 

Received 21 February 1983 

Abstract. The symmetry of the two- and three-dimensional Schrodinger equation is 
analysed in terms of second-order differential operators which commute with the Hamil- 
tonian of the solutions of the stationary Schrodinger equation. A set of equations for the 
coefficients of the symmetry operators is formulated and a general form for the structure 
of the symmetry operators is obtained. Symmetry operators have been found for the 
cases of some potentials. The effect of the symmetry raising at zero energy is described. 

1. Introduction 

Analysis of the dynamic symmetry of the stationary Schrodinger equation is of 
considerable interest in connection with such problems as the separation of variables 
(Miller 1977), the degeneration of energy levels and their classification, the derivation 
of a complete set of quantum numbers (Barut and Raczka 1977) and the calculation 
of matrix elements in the basis of the wavefunctions of coherent states (Malkin and 
Man’ko, 1979). Group properties of differential equations, which are the basis for 
an analysis of the dynamic symmetry, have been the object of many investigations. 
All the papers in this field may be tentatively divided into two groups: in the first 
group use is made of the criterion of invariance (Lie 1881, Ovsjannikov 1978, 
Meinhardt 1981); in the other group the notion of the symmetry operator $ and 
operator equation for ŝ  is utilised (Winternitz et a1 1966, Miller 1977, Barut and 
Raczka 1977). The second way, which is traditional for the solution of linear problems 
of mathematical physics and quantum mechanics, is accepted in this paper. 

The work of Winternitz et a1 (1966) is the closest to the approach adopted in the 
present analysis. However, that paper deals only with the symmetry of the two- 
dimensional stationary Schrodinger equation, where the operators of the symmetry 
ŝ  identically commute with the Hamiltonian A: [$, A] = 0. In the present work a 
more general definition of the symmetry operator is used, [ŝ , fi]4 = 0 if = E4 
(Malkin and Man’ko 1965), with both two- and three-dimensional Schrodinger 
equations being analysed. In an earlier paper (Voronin ef a1 1982) an analysis of the 
symmetry of a three-dimensional stationary Schrodinger equation was made with the 
help of second-order differential symmetry operators identically commuting with the 
Hamiltonian. 

It follows then that the symmetry operator, as defined in this paper, allows one 
solution of the stationary Schrodinger equation to be transformed into another at the 
same energy. Thus, the symmetry properties, investigated in this paper, describe the 
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degeneration of the energy levels. It should also be noted that the symmetry operators 
used, which are second-order differential operators, prevent us from making a compre- 
hensive analysis of the symmetry properties because the class of such operators is 
limited. However, the usefulness of this class of operators has been proved by analyses 
of many problems of quantum mechanics and mathematical physics (Barut and Raczka 
1977, Miller 1977).  

2. The basic system of equations 

Let us introduce the n-dimensional Schrodinger equation 

fi* = E* (2.1)  

fi = - A ~  + V ( r )  = - a 2 / a X S a X s  + V ( r )  

where the Hamiltonian fi, in the corresponding units, may be written as 

(2 .2)  

r = ( x  , . . , , x " )  and the repeated indices imply summation. It is now necessary to 
determine such second-order differential operators, called symmetry operators, 

(2 .3)  

which commute with the Hamiltonian (2.2) on a set of solutions for equation (2.1).  
As [g, A ]  and fi -E  are differential operators of orders 3 and 2 respectively, it is 
sufficient for them to vanish on the same set of functions 

1 

ŝ  = A " ( r )  a2/ax'ax' + B k ( r )  a/axk + C ( r )  

[ŝ , A] = f i ( A  - E )  
where 

fi = a ' ( r )  a / a x ' + b ( r )  

is some first-order differential operator. 
Substituting (2 .2) ,  (2 .3)  and (2 .5 )  into (2.4) and equating coefficients of the same 
operators results in the following system of linear partial differential equations for 
the real functions A", B k ,  C, a and b : 

a A L J / a X k  +aAkJ /ax '  +aAk ' /ax l  = -;(aka,, +a'sk l  +a lakr )  

( 2 . 6 ~ )  

a2A k ' / a x  axs + aB k/ax '  + aB ' /ax = -b& k , l = l , 2  , . . . ,  n (2.66) 

2 A "  av /ax1+a2B ' /aXs  a ~ ' + + 2 a ~ / a x ' = a ' ( V - E )  ( 2 . 6 ~ )  

B~ a v / a x  +A" a 2 v / a x L  axJ + a 2 c / a x s  ax' = a '  aV/ax '  + b (  V - E ) .  (2.6d)  

Note that the system of equations (2 .6)  with the appropriate coefficients of ŝ  and fi 
operators can be considered as equations for the potential V, which allows the given 
symmetry operator ŝ . 

i , j , k = l , 2  , . . . ,  n 

i = 1 , 2 , .  * . , n 

3. Two-dimensional stationary Schrodinger equation 

Let us introduce conventional notations for the two independent variables: x = x I ,  

y = x  . Operators in this case may be written as 2 

A = - a 2 / a x 2 - a 2 / a y 2 +  V ( X , Y )  (3.1) 
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S =A" d2/ax'+2Al2 a2/ax ay a'lay2+B' a/ax + B ~  a/ay +C  (3.2) 

(3.3) 

In (3.2) and in further calculations the matrix of coefficients A" is assumed to be 
symmetric (Aii = Aii), which apparently does not invalidate the general character of 
the analysis. In the two-dimensional case the system of equations (2.6) consists of 
ten equations 

( 3 . 4 ~ )  

fi = a 1  a/ax + a 2 a / a y  +b. 

aA"/ax = 2  aAI2/ay +aA22/aX = -;a' 

aA22/ay = 2  aA12/ax +aA"/ay = -:a2 

AA" + 2 aB'/ax = + 2 a ~ ' / a y  = --b 

(3.4b) 

(3.4c) 

u l 2 + a B 2 / a x  +aB'/ay = o (3.4d) 

2(A I '  av/ax +AI2 av/ay) + AB' + 2 aC/ax = a ' (  V - E )  (3.4e) 

2 (A l2 a V/ax + A 2 2  a V/a y ) + AB + 2 a c / a y  = a 2 (  V - E )  (3.4f) 

= a ' a V / a x + a 2 a V / a y + b ( V - E ) .  (3.4g) 

(d/ax);(A"-A22) = aA12/dy (a/ay )&A - A 2 2 )  = - d'4 "/dx (3.5) 

aB'/ax = aB2/ay aB'/ay = -aB2/ax (3.6) 

A" a2v/ax2+2A'2a2V/ax a y + A 2 2 a 2 v / a Y 2 + B 1 a v / a x + B 2 a v / a y + ~ ~  

From ( 3 . 4 ~ )  - (3.4d) 

follow. Equations (3.5) and (3 .6)  are Cauchy-Riemann conditions for two pairs of 
functions: ;(A"-A2*), AI2 and B', B2. This leads to 

$(A l1 -A'*) + i ~ ' ~  = f(z ) B ' + i B ' = g ( z )  (3.7) 

where z = x  + i y  and f (z ) ,  g(z) ,  thus far, are arbitrary analytical functions of z .  One 
can obtain the formula for determining C and the conditions which functions f ( z )  
and g(z)  would satisfy from (3.4e)-(3.4g). In order to express these results, it is 
convenient to introduce a potential V as a function of z = x  +iy and Z = x  - iy .  Let 
us take W(z, 2 )  = V -E. From the conditions of coincidence for equations (3.4e)- 
(3.4f) it follows that 

Im[(a'/az 2 ) ( f ~ )  + (ala2 )(f a w/az )I = 0. (3.8) 

Re[(dlaz)W(g -dfldz)]=O. (3.9) 

Equation (3.4g) fives 

Thus, the problem of finding the function C(x, y )  is reduced to that of restoring the 
function from well known components of its gradient. Using equations (3.4e) and 
(3.4f) gives 

C(X, Y)=-A"(x, yo)V(x, Y O )  

+A%", Yo)V(Xo ,  Y o ) - A 2 2 ( X ,  Y)V(X, y)+A22(X, Yo)V(X, y o )  

+constant. (3.10) 
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Note, that the functions f ( z )  and g(z),  satisfying conditions (3.8) and (3.9), must be 
defined with maximum generality. As follows from (3.7), the difference A” -A2* 
(but not each of the coefficients separately) may be found from f(z) .  Thus one of 
these coefficients may be chosen arbitrarily. This degree of arbitrariness is due to the 
fact that a trivial symmetry operator 

& = 4 ( x , y ) ( f i - E )  (3.11) 

may be added to each operator of the symmetry 3. In the Lie algebra L of symmetry 
operators ŝ  a set of operators (3.11) forms the ideal I. In fact, only the factor algebra 
LII  of the non-trivial symmetries is of interest and will be considered in this paper 
(Miller 1977). To do this, it suffices to fix A’’, taking, for instance, A’* = 0. 

Let us consider some examples. It can be seen from the calculations that symmetry 
operators, not identically commuting with the Hamiltonian, exist only at a definite 
value of energy (most frequently at E = 0). It is this case which will be considered 
here, since symmetry operators of the two-dimensional stationary Schrodinger 
equation, identically commuting with the Hamiltonian, are given by Winternitz et a1 
(1966). 

3.1. Two-dimensional hydrogen atom at zero energy 

In this case we have 

Condition (3.8) takes the form 

Im(d2f/dz2 - (3122) dfldz + (3/2z2)f) = 0. (3.13) 

Since the expression d2fldz2 - (3122) dfldz + (3/2z2)f at z # 0 is an analytical function 
of z ,  the imaginary part of which is equal to zero, the analytical function itself may 
be equal only to a real constant. Thus, condition (3.8) becomes a differential equation 
for f (z ) :  

(3.14) d2f/dz2-(3/2z) dfldz +(3/2z2)f = C1 

where C1 is a real constant. Solving equation (3.14) gives 

(3.15) 

where all Ci for i = 1 , .  . . , 5  are real constants. Let us introduce a new analytical 
function 

h (z )  =g(z)-df/dz.  (3.16) 

From (3.9) it follows that 

Re(dh/dz - hl2z)  = 0. (3.17) 

As the expression dh/dz - h/2z at z # 0 is an analytical function of z ,  the real part of 
which is equal to zero, the function dhldz - hl2z may be equal to an imaginary 
constant only 

dhldz - hl2z = 2iC6 (3.18) 
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where c6 is a real constant. Using the relations (3.16) and (3.18), we obtain 

h (2) = 4ic6z + (e7 + iC8)z 1 /2  

g ( z )  = c2 + i c 3  + (c,+ ic8)z ‘I’ +4(c1 + i ~ 6 ) z  
(3.19) 

where C, = C7 + 3C4/2, = C8 + 3C5/2, and c6, C7, C8, c7, c8 are real constants. 
Thus, in a general solution of (3.15) and (3.19) for f and g there are eight real 
constants, which give the corresponding eight symmetry operators. Since c6 and C1 
give functionally dependent operators i, = y a / a x  - x a / a y  andi ; ,  only seven symmetry 
operators are independent: 

R, = i, = y a / a x  - x a / a y  

2’ = A, = x a2/ay2 - y a 2 / a x  a y  - 4 a / a x  + &X ( x 2  + y’)-’/’  

23 =A, = y a ’ / a X ’ - x  a2/ax a y  - 4 a l a y  + & Y ( X ~ C Y ’ ) - ’ / ’  

(3.20) 

k6 = Re z 3/2 ( a / &  - i a / a y )  a l a x  + a x  Re z-’” 

R7 = Im z 3/2 (a/ax - i a / a y )  a/ax + a x  Im z 

Functions C(x,  y )  in each symmetry operator are calculated from (3.10). The operators 
A,, A, are the components of a two-dimensional Runge-Lenz vector. Note that the 
symmetry operators 2 4 - 2 7  (unlike 2 1 - 2 3 )  exist only at zero energy and commute 
with the Hamiltonian only on solutions of a corresponding Schrodinger equation. 
They are many-valued functions of coordinates. 

In terms of classical mechanics (3.20) means that a move in a two-dimensional 
Coulomb potential with zero energy would be described by at least seven integrals 
of motion instead of three. Four of them are many-valued functions of coordinates. 

3.2. Movement in the potential of a two-dimensional ‘turn over’ oscillator, V =  
-w2(x2 + y 2 ) ,  at zero energy 

Using the procedure described in the previous example we obtain the following 
symmetry operators: 

2, = iz = y a / a x  - X  a / a y  

R 2 = a 2 / a ~ z + W 2 ~ 2  

2, = a 2 / a x  a y  + W 2 ~ y  

(3.21) 

2 6  = Re [Z -’ ( a / a x  - i a/ay) a/ax - z -3 ( a / a x  - i a / a y )  + W 2 x / z  1 
2, = Im [Z -’ @/ax - i a / a y )  a/ax - z -3  @ / a x  - i a / a y  ) + w ’ X / Z  1. 

As in the previous e5ample the symmetry operators 2 1 - 2 3  also exist at any energy, 
while operators k4-X7 only exist if E = 0 with the regularity of coefficients breaking 
in the point x = y = 0. 
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It should be noted that neither the system of symmetry operators (3.20) nor the 
system (3.21) are closed with respect to commutation and, therefore, they do not 
form a Lie algebra. This is due to the limitation of the class of symmetry operators 
(2.9). The completion of sets (3.20) and (3.21) up to the bases of Lie algebra is not 
described by operators (2.3). However, the subsets of the first-order symmetry 
operators in (3.20) and (3.21) are closed with respect to the operation of commutation: 

in (3.20) 
* A  

[L,, x4] = -;25 

[i,, 2 4 1  = -225 

[L,, R,] = $ 2 4  

[i,, 2 5 1  = 2k4 

[ 2 4 ,  251 = 0 

[&, 2 5 1  = 0 

in (3.21) 

and form a new, special Lie subalgebra, existing only at zero energy in the examples 
discussed. 

4. Three-dimensional stationary Schrodinger equation 

By introducing the independent variables x, y, z instead of x ' ,  x', x 3 ,  operators I?, ŝ  
and fi can be written for a three-dimensional case ( n  = 3) 

fi = -a2/ax2-a2/ay2-a2/az2+ V ( X ,  y, Z )  

+ 2 ~ ' ~  a2/ay az + B' a/ax + B' a /ay  + B 3  a/az + c 
fi = a ' a/ax + a 2  a / a y  + a 3  a/az + b. 

(a/ax);(A" -A2') = aA"/ay 

(a/ax)i(A" -A33) = aA13/az 

(a/ay)i(A22-A33) = a A 2 3 / a ~  

aA "/aZ + a ~  13/ay + aAZ3/ax = o 
a ' =  -2 aA"/ax a 2  = -2 aA2'/ay a 3  = -2 a ~ ~ ~ / a z .  (4.5) 

The three relations (4.5) actually define the coefficients a ' ,  u 2 ,  a 3 .  The first six 
equations in (4.4) are Cauchy-Riemann conditions for the corresponding variables. 
General solutions of these equations are 

(4.1) 

S =A" a2/ax2+A2' a ' / a ~ ~ + A ~ ~  a2/a~ '+2A1 '  a2/ax a y  + 2 ~ ' ~  a2/ax az 

(4.2) 

(4.3) 

The group of equations ( 2 . 6 ~ )  at n = 3 consists of the following ten equations 

(a/ay)i(A" - A ~ ~ )  = -aA"/ax 

(a/az)$(A" -A33) = -aA13/ax 

(a/az)i(A22-A33) = - a ~ ~ ~ / a y  
(4.4) 

;(All- A22)+iA12= f(x + iy ,  z )  

+(A '' - A33) + iA l 3  = g (x + iz, y ) (4.6) 
i(A22-A33)+iA33 = h ( y  +iz, x )  

where f ( * , . ), g( .  , e )  and h ( - , ) are analytical functions of two variables. From (4.4) 
and (4.6) two functional couplings for f, g and h are obtained: 

(4.7) 

(4.8) 

Im (af/az + ag/ay + ahlax) = o 
Re ( f - g  + h)  = 0. 
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Using functions f, g and h, the group of equations (2.66) may be expressed as: 

Re a2f/az2+aB1/ax -aB2/ay = O  

Re a2g/ay2+aB1/aX - a ~ ~ / a ~  = O  

Rea2h/ax2+aB2/ay - a ~ ~ / a z  = O  

Im a2f/az2+aB2/ax +aB'/ay = o 
Im a2g/ay2+aB3/ax +aB'/az = o 
Im a2h/ax + a ~ ~ / a y  + aB2/az = 0. 

(4.9a) 

(4.96) 

One of the equations ( 4 . 9 ~ )  is the result of two other equations and the condition 
(4.8). However, in order to give the whole system (4.9) a more compact complex 
form, three equations are written in ( 4 . 9 ~ ) .  Let us introduce the new complex functions 

B ~ ~ = B ~ + ~ B ~  B13 = B + s3 B 2 3 = B 2 + i g 3 .  (4.10) 

Multiplying each of equations (4.96) by i and adding to the corresponding equation 
( 4 . 9 ~ )  a system of three complex equations would result instead of (4.9) 

aB12/ax + i  aB12/ay +a2f/at2 = o 
a ~ ' ~ / a ~  + i  aB"/az +a2g/ay2 = o 
aB23/ay + i  aB23/a~ +a2h/ax2 = 0. 

The following is a general solution of the system (4.11) 

B12=f(x+iy ,z ) -x  a2f/az2 

B13=i(x +iz, y ) - x  a2g/ay2 

B23=h'(y +iz, x ) - y  a2h/ax2 

(4.11) 

(4.12) 

where f(. , a ) ,  g( e ,  0 )  and h'( a ,  -) are analytical functions of two variables. Due to 
(4. lo), the following conditions must evidently be satisfied: 

Re (B12 - B13) = 0 (4.13) 

which are three functional couplings for f ,  i and h'. As has been mentioned in the 
previous section, classes of equivalent symmetry operators, forming a factor algebra 
L / I  in relation to the ideal of trivial symmetries #J (x, y, z ) ( A  - E ) ,  are under consider- 
ation. Since one of the diagonal coefficients A" of the operator representing any of 
these classes may be taken as arbitrary, A22  may be chosen equal to 0 without reducing 
the generality. In this case from (2.66) at k = I = 2 it follows that 

Im(B l 3  - B23) = 0 Re B23 = Im B12 

6 = -2 aB2/ay. (4.14) 

In order to deduce mathematical consequences from the five functional couplings 
(4.7), (4.8) and (4.13) it suffices to analyse the case when A" and Bk are regular 
functions at the point x = y = z = 0 and to expand the functions f, g, h, f ,  and h' as 
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Taylor series: 

Substituting series (4.15) into equations (4.7), (4.8) and (4.13) gives recurrence 
relations for coefficients fkl, . . . , f&d. Analysis of these recurrence relations shows that 
series (4.15) are cut off. The functionsf, g and h appear to be fourth-order polynomials 
and f ,  g“ and h’ third-order polynomials in x, y, z. As a result of very long calculations 
it was found that all coefficients of these polynomials are defined by 46 arbitrarily 
chosen real constants and hence, the general symmetry operator (2.3) may be written 
as a linear combination of 46 basis operators of the type (2.3). 

Let us introduce the following designations for the ten first-order basis operators 
obtained as described above: 

R, = a/ax 2, = a / a y  R, = a/az 

& = y a/ax - x a / a y  

28 = (x’ - y Z - z 2 )  a/ax +2xy a/ay + ~ X Z  a/az + X  

R 9 = 2 x y  a / a ~ + ( y ~ - ~ ’ - ~ ’ ) a / a y + 2 ~ ~  a / a z + y  

r Z I 0 = 2 ~ z  a / ax+2yz  a / a y + ( z 2 - X 2 - y 2 ) a / a z + z .  

2, = z a /ay  - y afaz R, = x a/az - 2 a/ax ( 4 . 1 6 ~ )  

X ,  = X  a/ax + y  a/ay +Z a/az 

Using the methods described above, the general symmetry operator may be given in 
the form 

(4.166) 

where ,io, A,, A,, are real constants, C(. , - ,  .) is a function of coordinates, the form 
of which depends upon the potential, and Cl is a set consisting of 35 pairs ( a ,  8): 
C l = { 1 , 1 ; 1 , 2 ; 1 , 3 ; 1 , 4 ; 1 , 5 ; 1 , 7 ; 2 , 3 ; 2 , 5 ; 2 , 7 ; 2 , 8 ; 3 , 3 ; 3 , 4 ;  

3 , 5 ;  3,7; 3 ,8;  3 ,9;  4 , 4 ;  4 , 7 ;  4 ,9 ;  4,lO; 5 , 5 ;  5 ,7 ;  5 , 8 ;  5 ,9 ;  5 , l O ;  6 ,6 ;  

6 ,7 ;  6 ,8 ;  6 ,9 ;  6, 10; 8,8; 8 ,9 ;  8, 10; 9 ,9 ;  9,lO). (4.17) 

It should be noted, that the choice of the set R is not unique; instead of (4.17) any 
other set from the 35 pairs (a,P) may be chosen without invalidating the linear 
independence of the elements 

1, xu (a = 1 , .  . . , lo), %& (a ,  P E a). (4.18) 

The main property of Cl is that any class of equivalent operators, represented by an 
element 3d6 (a, P = 1,  . . . , 10) belongs to the linear space with basis (4.18). 

From ( 4 . 1 6 ~ )  it follows that all symmetry operators of the first-order X, (a  = 
1 , .  . . , 10) may be represented as 

Ra = ~ f :  a jaxk  +c, 

1 

a = 1 , .  . . , 1 0  (4.19) 
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where summing over k is from 1 to 3, with x 1  = x ,  x 2  = y ,  x 3  = z .  All B! and C, 
coefficients are defined uniquely by ( 4 . 1 6 ~ )  and (4.19). Substituting (4.19) into (4.166) 
and using (2.3) and (2.4) gives 

(4.20) 

Formulae (4.20) give general expressions for regular coefficients A" and B k ,  containing 
45 constants A, (a = 1, . . . , l o )  and AaB (a, /3 E Cl). These expressions should then be 
used in four equations ( 2 . 6 ~ )  and (2.6d), which contain the potential V. Three 
conditions of coincidence of these equations follow from the group of the equations 
( 2 . 6 ~ ) ~  

(a/ax & ) [ U ' (  v - E )  -AB' - 2Aii  a v / a x i ]  = (a/ax')[a' ( v  - E )  -AB - 2A ' l  

ik = 12, 13,23 ( x  l, x 2 ,  x 3 )  = ( x ,  y ,  2) 

with the formula for C being 

C ( X , Y , Z ) =  [ ~ u ' ( V - E ) - $ A B ' - A " ~ V / ~ X ' ] , = ,  d( Jx: Y = Y 0 . Z  = 2 0  

+ J y ~ [ ~ a ~ ( ~ - ~ ) - i a s 2 - ~ 2 ~ a v j a x ' l y = ~  z =z0 dq 

+ Jz: [$a3( v - E )  -$a3 -A3' a v / a x i ] ,  d( + constant. 

Calculating AC with the help of ( 2 . 6 ~ )  and substituting this expression 
leads to 

( v  - E ) ( $  aa k/ax - 6 )  -f am k/ax + (B - aAk'/ax ' -;a ') a v / a x  = 0. 

a v / a x  '1 
(4.21) 

(4.22) 

into (2.6d) 

(4.23) 

Relations (4.21) and (4.23) must be fullfilled identically for independent variables 
x = x  , y = x  , z = x  . This condition permits all equations for 45 constants A, 
(a = 1, . . . , 10) and AaO (a, p E Cl) to be obtained as well as the symmetry operators 
of the stationary Schrodinger equation with a particular potential to be found. 

Let us now consider some examples. In the case of V = -&/Jx' + y 2  + z 2 and 
V = -U 2(x + y + z '), two-dimensional analogues of which were considered in § 3, 
additional symmetry operators at E = 0 have not been found. Next, consider the 
example of a potential, which permits the symmetry operator, commuting with the 
Hamiltonian only on the solutions of the corresponding stationary Schrodinger 
equation. 

1 2 3 

Let only one constant A 6 7  differ from zero in the operator 2 (4.166), so that 

R = 2 6 2 7  + c ( x ,  y , z ) . (4.24) 

The potential, permitting the operator (4.24), is then conveniently found in the form 

(4.25) 

where r 2 = x 2 + y 2 ,  and r$( . )  is an arbitrary function. At E = O  the potential Vo= 
r - 'd(z / r )  allows both first-order symmetry operators R 6  and $7: [ 2 6 ,  AI = 0, 

v = r-'d ( z / r )  + 8 ( x ,  y ,  2 )  



3418 

[R,, 61 = - 2 6 .  We are to find such functions e(x, y, z )  and C(x, y, z )  for which the 
potential (4.25) would allow the second-order symmetry operator (4.24) with 
C(x, y, z )  z 0. The potential (4.25) must satisfy three equations (4.21) and equation 
(4.23). Considering that Vo = r-’4 ( z / r )  satisfies these equations with A” and B k ,  

defined by (4.24), the following four equations for 8 can be derived from (4.21) and 
(4.23): 

( 4 . 2 6 ~ )  
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y ae/ax - X  ae/ay = o 
i ( x 2 - y 2 ) ( a 2 e / a X 2 - a 2 e / a y 2 ) + 2 ~ ~  a2e/ax ay + ~ X Z  a2e/ax az +fyz a2e/ay az 

:YZ (a2e/ax2 - a2e/az2) - :XZ a2e/ax ay - XY a2e/ax az 

~ X Z  (a2e/ay2 - a2e/az ’) - f y z  a’e/aX ay - :(x ’ - y ’) a2e/ax az 

+ 3~ aelax + 3 y  aelay + z aelaz + 28 = 0 (4.266) 

+:(x* -y2)  a2e/ay az -52 ae/ay -2y ae/az = o ( 4 . 2 6 ~  

- X Y  a2e/ay az -42 ae/ax -Ix ae/az = 0. (4.26d 

A function in the most general form, satisfying four equations (4.26), may be written 
as 

(4.27) 

where r 2  = x 2  +y2, 41( - ) an arbitrary function, y is a constant. The first term on the 
right hand side (4.27) is, however, of no importance, since it may be included in the 
term rP2q5(z/r)  of (4.25). Thus, the potential of interest has the form 

v = ( I / r Z ) 4 ( z / r ) + ( - y / r 2 )  In r y # 0. (4.28) 

eix, Y, 2 )  = ( 1 / r 2 ) 4 1 ( z / r ) + ( ~ / r 2 )  In r 

Calculating C(x, y, z )  in terms of (4.22) yields 

R = R,&, + i y  tan-’ (y/x). (4.29) 

It can be seen that the symmetry operator (4.29) satisfies the commutation relation 

[2, ri] = -2kJi. (4.30) 

It should be noted that the axially symmetric potential (4.28) at E # 0 permits only 
one first-order symmetry operator 2 6 ,  which identically commutes with the Hamil- 
tonian. At E = 0 the potential (4.28) permits the non-commuting Lie algebra 

[&, RI = -:y (4.31) 
with 2, as follows from (4.30), commuting with the Hamiltonian only on solutions of 
the corresponding stationary Schrodinger equation 6 4  = 0. 

( l ,&,R):  

5. Conclusions 

In both two- and three-dimensional cases, additional symmetry operators (which are, 
in terms of classical mechanics, additional integrals of motion) may appear when 
motion occurs with a specific energy. Naturally the origin of energy reference is 
chosen so that this specific energy is E = 0. Additional symmetry operators, existing 
only at E = 0, commute with the Hamiltonian only on solutions of a corresponding 
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stationary Schrodinger equation. The symmetry operators, existing at all energies, 
identically commute with the Hamiltonian. With additional symmetry operators a 
specific Lie subalgebra may appear to exist in these problems only at E = 0. Combina- 
tion of all first and second-order symmetry operators, is not closed as a rule, with 
respect to commutation and does not form a Lie algebra, this being due to the limitation 
of the class of second-order symmetry operators. 

In the two-dimensional case the structure of symmetry operators substantially 
depends on the fact that some linear combinations of operator coefficients are analytical 
functions of the complex variable z = x + iy : 

;(A l 1  - A 2 2 )  + iA l 2  = f (2) B ' + i B 2 = g ( z ) .  

In the most non-trivial (from the mathematical point of view) cases the potential, 
which is not identically equal to zero, allows up to seven non-trivial symmetry 
operators. Hence the analytical functions f (2) and g ( z )  satisfy some differential 
equations, the form of which depends on the potential. The specific nature of the 
two-dimensional case is that potential which is identically equal to zero at E = 0 
(Laplace equation) permits an infinite-dimensional Lie algebra, with the functions 
f(z) and g(z)  being arbitrary. 

In the three-dimensional case the number of second-order symmetry operators 
with regular coefficients is always limited and never exceeds 45. All the 45 symmetry 
operators are permited only when the potential is identically equal to zero at E = 0 
(Laplace equation). In this case ten symmetry operators Ra (a = 1,. . . , 10) do not 
contain double differentiation and are, in fact, first-order operators. The other 35 
operators can be presented in the form kaA?o. The mutual second-order symmetry 
operator, which depends on the 4 5 constants, has the following structure 

where A,, A=, are constants, C(x, y, z )  is a function of coordinates, the form of which 
depends on the potential, and Cl is some set of pairs (a, p )  consisting of 35 elements. 
For each particular potential not all A,, A,, constants will be independent, and the 
number of symmetry operators, resulting from independent constants, is determined 
by the symmetry properties of the potential. 

It should be noted that the problem of symmetry operators for a three-dimensional 
stationary Schrodinger equation with irregular coefficients (in one or more points) has 
not been considered in this work and remains to be solved. 

Using these results one may not only examine the symmetry of the stationary 
Schrodinger equation with a given potential, but may also find potentials which possess 
certain properties of symmetry. Thus, the potential 

taken as an example in 9: 4, leaves only A 6  arbitrary at all energies and, thus, permits 
only the symmetry operator 26 which identically commutes with the Hamiltonian. 
Under the condition of zero energy there is a second arbitrary constant A67 that is 
not equal to zero, and this gives an additional second-order symmetry operator, which 
commutes with the Hamiltonian only for solutions of a corresponding stationary 
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Schrodinger equation. It should be stressed that in this case symmetry operators form 
a non-commutative Lie algebra, which in the example considered exists only if the 
energy is equal to zero. 
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